Thursday, 23 January 2014

GENETİK ARAŞTIRMA ALANLARI

Evrimsel gelişim genetiği (Génétique évolutive du développement): Döllenmiş tekhücreli yumurta aşamasından başlayarak organizmanın oluşmasındaki tüm moleküler etkenleri ve dolayısıyla onları kodlayan genleri inceler. Yoğun olarak, özellikle iki taraflı simetri düzenlenmesiyle ve basit bir biyolojik sistemden (tekhücreliler, ışınsal simetri) karmaşık bir organizmaya (çokhücreli, genellikle metamerize ve özelleşmiş organlar halinde yapılaşmış organizmalar) geçişi sağlayan mekanizmalarla ilgilenir. Organizmanın oluşum mekanizmalarını incelemek için model organizma türleri (Drosophila , yuvarlak solucanlar, zebra balığı, tavuk vs.) kullanır. Fransızca'da evrimsel gelişim genetiği adıyla bilinen bu dal, İngilizce'de evrimsel gelişim biyolojisi olarak bilinir. Medikal genetik Genomik: İnsan genomunun (kromozomlarda yapılanmış üç milyar baz çiftinin, DNA bütününün) yapısını, bileşimini ve evrimini inceler ve DNA’da biyolojik bir anlamı olabilecek birimleri (genler, çevrilmeyen transkripsiyon birimleri, mikroRNA’lar, düzenleme üniteleri, transkripsiyon faktörleri olan promotörler, CNG alfa ve beta kanalları vs.) tanımlamaya çalışır. Kantitatif genetik : Genetik bileşenleri, niceliksel özelliklerin (boy, tüy rengi, büyüme hızı vs.) varyasyonunu (değişme, çeşitlenme) ve kalıtsallıklarını açıklayarak inceler. Evrim genetiği : Türlerin genomlarında doğal seçilimin izlerini inceler ve türlerin değişen çevrelerde (ortamlarda) hayatta kalmasında ve adaptasyonunda baş rolü oynayan genleri tanımlamaya çalışır. Popülasyon genetiği: Popülasyonların ve türlerin çeşitliliğini etkileyen güçleri (ve etki ya da sonuçlarını) matematiksel ve istatistikî yöntemler geliştirerek inceler. Bir başka deyişle popülasyonlardaki fertlerin benzerlik ve farklılıklarının kaynaklarını araştıran bir genetik altdalıdır. Dört ana madde üzerinden yola çıkarak araştırmalar yapar: Bunlar doğal seçilim, gen havuzu, mutasyonlar ve gen devamlılığıdır. Moleküler genetik: Canlıların kalıtım materyali olan genlerin yapılarını ve işlevlerini moleküler düzeyde inceleyen bir genetik altdalıdır. Moleküler genetik, moleküler biyolojinin ve genetiğin yöntemlerini kullanarak çalışır. Ekolojik genetik: Genetik çalışmaları ekolojik alanda sürdüren bir genetik altdalıdır. Ekolojik genetik, canlıların oluşturduğu popülasyonları "popülasyon genetiği" ile yakından ilişkili olarak araştırır.

GENETİK ALGORİTMA

Genetik algoritmalar, doğada gözlemlenen evrimsel sürece benzer bir şekilde çalışan arama ve eniyileme yöntemidir. Karmaşık çok boyutlu arama uzayında en iyinin hayatta kalması ilkesine göre bütünsel en iyi çözümü arar. Genetik algoritmaların temel ilkeleri ilk kez Michigan Üniversitesi'nde John Holland tarafından ortaya atılmıştır. Holland 1975 yılında yaptığı çalışmaları “Adaptation in Natural and Artificial Systems” adlı kitabında bir araya getirmiştir. İlk olarak Holland evrim yasalarını genetik algoritmalar içinde eniyileme problemleri için kullanmıştır. Genetik algoritmalar problemlere tek bir çözüm üretmek yerine farklı çözümlerden oluşan bir çözüm kümesi üretir. Böylelikle, arama uzayında aynı anda birçok nokta değerlendirilmekte ve sonuçta bütünsel çözüme ulaşma olasılığı yükselmektedir. Çözüm kümesindeki çözümler birbirinden tamamen bağımsızdır. Her biri çok boyutlu uzay üzerinde bir vektördür. Genetik algoritmalar problemlerin çözümü için evrimsel süreci bilgisayar ortamında taklit ederler. Diğer eniyileme yöntemlerinde olduğu gibi çözüm için tek bir yapının geliştirilmesi yerine, böyle yapılardan meydana gelen bir küme oluştururlar. Problem için olası pekçok çözümü temsil eden bu küme genetik algoritma terminolojisinde nüfus adını alır. Nüfuslar vektör, kromozom veya birey adı verilen sayı dizilerinden oluşur. Birey içindeki her bir elemana gen adı verilir. Nüfustaki bireyler evrimsel süreç içinde genetik algoritma işlemcileri tarafından belirlenirler. Problemin bireyler içindeki gösterimi problemden probleme değişiklik gösterir. Genetik algoritmaların problemin çözümündeki başarısına karar vermedeki en önemli faktör, problemin çözümünü temsil eden bireylerin gösterimidir. Nüfus içindeki her bireyin problem için çözüm olup olmayacağına karar veren bir uygunluk fonksiyonu vardır. Uygunluk fonksiyonundan dönen değere göre yüksek değere sahip olan bireylere, nüfustaki diğer bireyler ile çoğalmaları için fırsat verilir. Bu bireyler çaprazlama işlemi sonunda çocuk adı verilen yeni bireyler üretirler. Çocuk kendisini meydana getiren ebeveynlerin (anne, baba) özelliklerini taşır. Yeni bireyler üretilirken düşük uygunluk değerine sahip bireyler daha az seçileceğinden bu bireyler bir süre sonra nüfus dışında bırakılırlar. Yeni nüfus, bir önceki nüfusta yer alan uygunluğu yüksek bireylerin bir araya gelip çoğalmalarıyla oluşur. Aynı zamanda bu nüfus önceki nüfusun uygunluğu yüksek bireylerinin sahip olduğu özelliklerin büyük bir kısmını içerir. Böylelikle, pek çok nesil aracılığıyla iyi özellikler nüfus içerisinde yayılırlar ve genetik işlemler aracılığıyla da diğer iyi özelliklerle birleşirler. Uygunluk değeri yüksek olan ne kadar çok birey bir araya gelip, yeni bireyler oluşturursa arama uzayı içerisinde o kadar iyi bir çalışma alanı elde edilir. Probleme ait en iyi çözümün bulunabilmesi için; Bireylerin gösterimi doğru bir şekilde yapılmalı, Uygunluk fonksiyonu etkin bir şekilde oluşturulmalı, Doğru genetik işlemciler seçilmeli. Bu durumda çözüm kümesi problem için bir noktada birleşecektir. Genetik algoritmalar, diğer eniyileme yöntemleri kullanılırken büyük zorluklarla karşılaşılan, oldukça büyük arama uzayına sahip problemlerin çözümünde başarı göstermektedir. Bir problemin bütünsel en iyi çözümünü bulmak için garanti vermezler. Ancak problemlere makul bir süre içinde, kabul edilebilir, iyi çözümler bulurlar. Genetik algoritmaların asıl amacı, hiçbir çözüm tekniği bulunmayan problemlere çözüm aramaktır. Kendilerine has çözüm teknikleri olan özel problemlerin çözümü için mutlak sonucun hızı ve kesinliği açısından genetik algoritmalar kullanılmazlar. Genetik algoritmalar ancak; Arama uzayının büyük ve karmaşık olduğu, Mevcut bilgiyle sınırlı arama uzayında çözümün zor olduğu, Problemin belirli bir matematiksel modelle ifade edilemediği, Geleneksel eniyileme yöntemlerinden istenen sonucun alınmadığı alanlarda etkili ve kullanışlıdır. Genetik algoritmalar parametre ve sistem tanılama, kontrol sistemleri, robot uygulamaları, görüntü ve ses tanıma, mühendislik tasarımları, planlama, yapay zeka uygulamaları, uzman sistemler, fonksiyon ve kombinasyonel eniyileme problemleri ağ tasarım problemleri, yol bulma problemleri, sosyal ve ekonomik planlama problemleri için diğer eniyileme yöntemlerinin yanında başarılı sonuçlar vermektedir.

NOKTA MUTASYON

Nokta ya da gen mutasyonları, DNA nükleotit dizisinde oluşan ve gelecek nesile aktarılabilen değişiklikler olarak adlandırılırlar. Nokta mutsayonlar, genellikle bir veya birkaç nükleottitte meydana gelen mutasyonlardır. DNA'da baz çifti yer değiştirmeleri sonucunda ya da bir baz çiftinin girmesi ve çıkması (mikroinsersiyon-mikrodelesyon) sonucunda oluşurlar. Tüm mutasyon durumlarında olduğu gibi nokta mutasyonlar sonucu meydana gelen fenotipik değişimler de, nokta mutasyonun neresinde gerçekleştiğine bağlıdır. Üreme hücrelerinde oluşan nokta mutasyonları döllere aktarılır. Örneğin, orak hücre anemisinde hemoglobinin bir polipeptit zincirini sentezleyen geninde bir nokta mutasyonu oluşmuştur. Bu ise tek bir nükleotitte değişme (kalıp DNA zincirinde), anormal bir proteinin üretilmesine neden olur. Timin yerine adenin girmesi, mRNA’da adenin yerine urasilin gelmesine ve bu da translasyonda valin adlı amino asitin yanlışlıkla proteinin yapısına girmesi bu hastalığın temelini oluşturur.

GEN AKTARIMI

Gen aktarımı, bir canlının hücrelerine, başka bir canlının DNA'sının belli bölümlerinin yerleştirilmesi işlemine denir. Rekombinant DNA teknolojisinin uygulamalarından biridir. Her canlı grubu için farklı bir aracı canlı (taşıyıcı) kullanılarak gerçekleştirilir. Önceleri sadece bakteriler aktarımda kullanılmaktaysa da, günümüzde maya, bitki ve hayvan hücreleri de bu işlem için yaygın olarak kullanılmaktadır. Aktarım işlemi için bakterilerde en çok Escherichia coli kullanılmaktadır. Bu bakterinin çeşitli ırkları çok iyi şekilde bilinmektedir. Bu nedenle plazmid, faj ve kozmidler için konak görevini yapabilirler. DNA'nın konak hücreye sokulmasında taşıyıcı olarak plazmid DNA kullanıldıysa transformasyon, virüs DNA'sı kullanıldıysa transenfeksiyon ya da trandüksiyon yöntemlerinden yararlanılır. Bu uygulamaların dışında mikroenjeksiyon, biyolistik ve elektroporasyon gibi teknikler de kullanılmaktadır. Gen aktarımının kullanım alanlarından birisi gen tedavisidir. Bununla beraber günümüzde birçok bitki ve hayvana gen aktarımı yoluyla yeni özellikler kazandırılmaktadır. Gen aktarımı sayesinde gelecek nesillerin daha sağlıklı olması sağlanabilir.

BİYOKİMYA

Biyokimya, bitki, hayvan ve mikroorganizma biçimindeki bütün canlıların yapısında yer alan kimyasal maddeleri ve canlının yaşamı boyunca sürüp giden kimyasal süreçleri inceleyen bilim dalıdır. Biyokimyanın amacı her şeyden önce, hücre nin temel bileşenleri olan protein, karbonhidrat, lipit gibi organik bileşiklerin ve yaşamsal önem taşıyan kimyasal tepkimelerde en büyük rolü oynayan DNA nükleik asitlerin, vitaminlerin ve hormonların yapısal ve nicel çözümlemesini yapmaktır. Canlılardaki protein bileşimi, besinlerin enerjiye dönüşmesi, kalıtsal özelliklerin kimyasal mekanizmalarla iletilmesi gibi yaşam süreçlerinin araştırılması da yine biyokimyanın ilgi alanına girer. Her yaşam bilimi ve kimya ile uğraşmakta olan fakültede (tıp, eczacılık, biyoloji, ziraat, veteriner vs.) ilgili biyokimya kürsüsü bulunur. İnsan sağlığıyla ilgili bilimler de iki alanda incelenir: 1. Temel biyokimya 2. Klinik biyokimya. Klinik biyokimya laboratuvar uzmanlığı ise, klinik laboratuvar bilimi ve teknolojisinin hasta bakımı için kullanıldığı bir tıp disiplini olup, sağlık ve hastalıktaki biyokimyasal mekanizmaları, hastalıkların önlenmesi, tanı ve ayırıcı tanı, prognoz ve tedavinin izlenmesindeki testleri, laboratuvar sonuçlarının tıbbi yorumlarını, klinisyenlere konsültasyonunu ve laboratuvar tanıyı içeren, tıbba ve kliniğe özgün bir laboratuvar bilimi ve uzmanlık alanıdır. Ülkemizde tüm tıp uzmanlık alanlarında olduğu gibi, bu alanın uzmanları da 1219 sayılı Tababet ve Şuabatı San'atlarının Tarzı İcrasına Dair Kanun'un 9 uncu maddesine göre, 19/06/2002 tarih ve 24790 sayılı Resmi Gazetede yayımlanan Tıpta Uzmanlık Tüzüğü'ne göre yetişmektedirler. Bu bilim alanının lisans eğitimi ülkemizde ilk olarak Ege Üniversitesi Biyokimya Bölümü'nde verilmeye başlanmıştır. Bölümde aynı zamanda biyokimya ağırlıklı biyokimyagerlik ve biyoteknoloji ağırlıklı biyokimyagerlik opsiyonları bulunmaktadır. 2011 yılında ise Cumhuriyet Üniversitesi de Biyokimya bölümünü Fen Fakültesi bünyesinde açmıştır. 21. yüzyılın biyolojik bilimler ve biyoteknoloji çağı olacağı kabul edilmektedir. Bilim ve teknolojinin amacı sağlıklı bir çevre ve sağlıklı bir yaşamdır. Bu nedenle bugün hayal bile edilemeyecek olanakların insanlığın hizmetine sunulmasında en büyük pay gelecekte bu meslek üyelerinin olacaktır. Son yılların Nobel bilim ödüllerinin büyük oranda biyokimyasal çalışmalara verilmiş olması bunun en güzel kanıtıdır. İş olanaklarının, biyokimya, biyoteknoloji ve gen teknolojisinde gözlenen gelişmelere paralel olarak yoğunlaşması gelişmiş ülkelerde yayınlanan bilimsel dergilerdeki iş ilanlarının büyük bir kısmının bu alanlara yönelik oluşu ile kanıtlanmaktadır